小明永久免费大陆在线观看-小明永久免费视频-小明永久视频免费播放-小嫩妇好紧好爽再快视频-小嫩嫩12欧美-小日本xxx

首頁 新聞 > 科技 > 正文

oled是什么意思?什么叫OLED

oled是什么意思?什么叫OLED

OLED(Organic light emitting diode)是繼TFT-LCD(Thin film transistor liquid crystal display),新一代之平面顯示器技術。其具備有構造簡單、自發光不需背光源、對比度高、厚度薄、視角廣、反應速度快、可用于撓曲性面板、使用溫度范圍廣等優點。1987年,美國Kodak公司鄧青云(C.W. Tang)博士等人,將OLED組件及基本之材料確立[1]。1996年,日本Pioneer公司成為第一家將此技術量產化之公司,并將OLED面板搭配於其所生產之車用音響顯示器。近年來,由於其前景看好,日本、美國、歐洲、臺灣及韓國之研發團隊如雨後春筍般相繼成立,導致了有機發光材料日益成熟,設備廠商蓬勃發展,以及相繼工藝技術不斷之演進。然而,OLED技術于原理及工藝上,與目前發展成熟之半導體、LCD、CD-R甚或LED產業雖有相關,但卻有其獨特know-how之處;因此,OLED量產化仍有許多瓶頸。臺灣錸寶科技公司系由1997年開始研發OLED之相關技術,于2000年成功量產OLED面板,成為繼日本東北先鋒後,全世界第二家量產OLED之面板公司;而2002年,更陸續外銷出貨單彩(mono-color)及區域多彩(area-color)面板如圖一所示,并提升良率及產量,一躍而成為世界上產量最大OLED面板供應商。

[圖一:錸寶之區域多彩及單彩OLED面板]

由於OLED工藝中,有機膜層之厚度將影響元件特性甚鉅,一般而言,膜厚誤差必須小於5納米,為名符其實之納米科技。舉例來說,TFT-LCD平面顯示器之第三代基板尺寸,一般定義為550mm x 650mm,在此尺寸之基板上,欲控制如此精準之膜厚,有其困難性,也因此限制了OLED在大面積基板之工藝,和大面積面板之應用。目前而言,OLED之應用主要為較小之單色(mono-color)及區域多彩(area-color)顯示器面板,如:手機主螢幕、手機副螢幕、游戲機顯示器、車用音響螢幕及個人數位助理(PDA)顯示器。由於OLED全彩化之量產工藝尚未臻至成熟,小尺寸之全彩OLED產品預計於2002年下半年以後才會陸續上市。由於OLED為自發光顯示器,相較於同等級之全彩LCD顯示器,其視覺表現極為優異,有機會直接切入全彩小尺寸高檔產品,如:數碼相機和掌上型VCD(或DVD)播放器,至於大型面板(13寸以上)方面,雖有研發團隊展示樣品,但量產技術仍尚待開發。 OLED 因發光材料的不同,一般可分小分子(通常稱OLED)及高分子(通常稱PLED)兩種,技術的授權分別為美國的Eastman Kodak(柯達)和英國的CDT(Cambridge Display Technology),臺灣錸寶科技公司是少數同時發展OLED和PLED的公司。在本文中,主要介紹小分子OLED,首先將會介紹OLED原理,其次介紹相關關鍵工藝,最後會介紹目前OLED技術發展之方向。

OLED之原理OLED組件系由n型有機材料、p型有機材料、陰極金屬及陽極金屬所構成。電子(空穴)由陰極(陽極)注入,經過n型(p型)有機材料傳導至發光層(一般為n型材料),經由再結合而放光。一般而言,OLED元件制作的玻璃基板上先濺鍍ITO作為陽極,再以真空熱蒸鍍之方式,依序鍍上p型和n型有機材料,及低功函數之金屬陰極。由於有機材料易與水氣或氧氣作用,產生暗點(Dark spot)而使元件不發亮。因此此元件於真空鍍膜完畢後,必須於無水氣及氧氣之環境下進行封裝工藝。 在陰極金屬與陽極ITO之間,目前廣為應用的元件結構一般而言可分為5層。如圖二所示,從靠近ITO側依序為:空穴注入層、空穴傳輸層、發光層、電子傳輸層、電子注入層。就OLED組件演進歷史中,1987年Kodak首次發表之OLED組件,系由兩層有機材料所構成,分別為空穴傳輸層及電子傳輸層。其中空穴傳輸層為p型之有機材料,其特性為具有較高之空穴遷移率,且其最高占據之分子軌域(Highest occupied molecule orbital,HOMO)與ITO較接近,可使空穴由ITO注入有機層之能障降低。

[圖二:OLED結構圖]

而至於電子傳輸層,系為n型之有機材料,其特性為具有較高之電子遷移率,當電子由電子傳輸層至空穴電子傳輸層介面時,由於電子傳輸層之最低非占據分子軌域(Lowest unoccupied molecule orbital,LUMO)較空穴傳輸層之LUMO高出甚多,電子不易跨越此一能障進入空穴傳輸層,遂被阻擋於此介面。此時空穴由空穴傳輸層傳至介面附近與電子再結合而產生激子(Exciton),而Exciton會以放光及非放光之形式進行能量釋放。以一般螢光(Fluorescence)材料系統而言,由選擇率(Selection rule)之計算僅得25%之電子空穴對系以放光之形式做再結合,其余75%之能量則以放熱之形式散逸。近年來,正積極被開發磷光(Phosphorescence)材料成為新一代的OLED材料[2],此類材料可打破選擇率之限制,以提高內部量子效率至接近100%。 在兩層元件中,n型有機材料-即電子傳輸層-亦同時被當作發光層,其發光波長系由HOMO及LUMO之能量差所決定。然而,好的電子傳輸層-即電子遷移率高之材料-并不一定為放光效率佳之材料,因此目前一般之做法,系將高螢光度的有機色料,摻雜(Doped)於電子傳輸層中靠近空穴傳輸層之部分,又稱為發光層[3],其體積比約為1%至3%。摻雜技術開發系用於增強原材料之螢光量子吸收率的重點技術,一般所選擇的材料為螢光量子吸收率高的染料(Dye)。由於有機染料之發展源自於1970至1980年代染料雷射,因此材料系統齊全,發光波長可涵蓋整個可見光區。在OLED組件中摻雜之有機染料,能帶較差,一般而言小於其宿主(Host)之能帶,以利exciton由host至摻雜物(Dopant)之能量轉移。然而,由於dopant能帶較小,而在電性上系扮演陷阱(trap)之角色,因此,摻雜層太厚將會使驅動電壓上升;但若太薄,則能量由host轉移至dopant之比例將會變差,因此,此層厚度必須最佳化。 陰極之金屬材料,傳統上系使用低功函數之金屬材料(或合金),如鎂合金,以利電子由陰極注入至電子傳輸層,此外一種普遍之做法,系導入一層電子注入層,其構成為一極薄之低功函數金屬鹵化物或氧化物,如LiF或Li2O,此可大幅降低陰極與電子傳輸層之能障[4],降低驅動電壓。 由於空穴傳輸層材料之HOMO值與ITO仍有差距,此外ITO陽極在長時間操作後,有可能釋放出氧氣,并破壞有機層產生暗點。故在ITO及空穴傳輸層之間,插入一空穴注入層,其HOMO值恰介於ITO及空穴傳輸層之間,有利於空穴注入OLED元件,且其薄膜之特性可阻隔ITO中之氧氣進入OLED元件,以延長元件壽命。

OLED的驅動方式

OLED的驅動方式分為主動式驅動(有源驅動)和被動式驅動(無源驅動)。  一、無源驅動(PM OLED)  其分為靜態驅動電路和動態驅動電路。  ⑴ 靜態驅動方式:在靜態驅動的有機發光顯示器件上,一般各有機電致發光像素的陰極是連在一起引出的,各像素的陽極是分立引出的,這就是共陰的連接方式。若要一個像素發光只要讓恒流源的電壓與陰極的電壓之差大于像素發光值的前提下,像素將在恒流源的驅動下發光,若要一個像素不發光就將它的陽極接在一個負電壓上,就可將它反向截止。但是在圖像變化比較多時可能出現交叉效應,為了避免我們必須采用交流的形式。靜態驅動電路一般用于段式顯示屏的驅動上。  ⑵ 動態驅動方式:在動態驅動的有機發光顯示器件上人們把像素的兩個電極做成了矩陣型結構,即水平一組顯示像素的同一性質的電極是共用的,縱向一組顯示像素的相同性質的另一電極是共用的。如果像素可分為N行和M列,就可有N個行電極和M個列電極。行和列分別對應發光像素的兩個電極。即陰極和陽極。在實際電路驅動的過程中,要逐行點亮或者要逐列點亮像素,通常采用逐行掃描的方式,行掃描,列電極為數據電極。實現方式是:循環地給每行電極施加脈沖,同時所有列電極給出該行像素的驅動電流脈沖,從而實現一行所有像素的顯示。該行不再同一行或同一列的像素就加上反向電壓使其不顯示,以避免“交叉效應”,這種掃描是逐行順序進行的,掃描所有行所需時間叫做幀周期。  在一幀中每一行的選擇時間是均等的。假設一幀的掃描行數為N,掃描一幀的時間為1,那么一行所占有的選擇時間為一幀時間的1/N該值被稱為占空比系數。在同等電流下,掃描行數增多將使占空比下降,從而引起有機電致發光像素上的電流注入在一幀中的有效下降,降低了顯示質量。因此隨著顯示像素的增多,為了保證顯示質量,就需要適度地提高驅動電流或采用雙屏電極機構以提高占空比系數。  除了由于電極的公用形成交叉效應外,有機電致發光顯示屏中正負電荷載流子復合形成發光的機理使任何兩個發光像素,只要組成它們結構的任何一種功能膜是直接連接在一起的,那兩個發光像素之間就可能有相互串擾的現象,即一個像素發光,另一個像素也可能發出微弱的光。這種現象主要是因為有機功能薄膜厚度均勻性差,薄膜的橫向絕緣性差造成的。從驅動的角度,為了減緩這種不利的串擾,采取反向截至法也是一行之有效的方法。  帶灰度控制的顯示:顯示器的灰度等級是指黑白圖像由黑色到白色之間的亮度層次。灰度等級越多,圖像從黑到白的層次就越豐富,細節也就越清晰。灰度對于圖像顯示和彩色化都是一個非常重要的指標。一般用于有灰度顯示的屏多為點陣顯示屏,其驅動也多為動態驅動,實現灰度控制的幾種方法有:控制法、空間灰度調制、時間灰度調制。  二、有源驅動(AM OLED)  有源驅動的每個像素配備具有開關功能的低溫多晶硅薄膜晶體管(LowTemperature Poly-Si Thin Film Transistor, LTP-Si TFT),而且每個像素配備一個電荷存儲電容,外圍驅動電路和顯示陣列整個系統集成在同一玻璃基板上。與LCD相同的TFT結構,無法用于OLED。這是因為LCD采用電壓驅動,而OLED卻依賴電流驅動,其亮度與電流量成正比,因此除了進行ON/OFF切換動作的選址TFT之外,還需要能讓足夠電流通過的導通阻抗較低的小型驅動TFT。  有源驅動屬于靜態驅動方式,具有存儲效應,可進行100%負載驅動,這種驅動不受掃描電極數的限制,可以對各像素獨立進行選擇性調節。  有源驅動無占空比問題,驅動不受掃描電極數的限制,易于實現高亮度和高分辨率。  有源驅動由于可以對亮度的紅色和藍色像素獨立進行灰度調節驅動,這更有利于OLED彩色化實現。  有源矩陣的驅動電路藏于顯示屏內,更易于實現集成度和小型化。另外由于解決了外圍驅動電路與屏的連接問題,這在一定程度上提高了成品率和可靠性。  三、主動式與被動式兩者比較  被動式 主動式   瞬間高高密度發光(動態驅動/有選擇性) 連續發光(穩態驅動)   面板外附加IC芯片 TFT驅動電路設計/內藏薄膜型驅動IC   線逐步式掃描 線逐步式抹寫數據   階調控制容易 在TFT基板上形成有機EL畫像素   低成本/高電壓驅動 低電壓驅動/低耗電能/高成本   設計變更容易、交貨期短(制造簡單) 發光組件壽命長(制程復雜)  簡單式矩陣驅動+OLED LTPS TFT+OLED編輯本段第七節、OLED的優缺點  一、OLED的優點  1、厚度可以小于1毫米,僅為LCD屏幕的1/3,并且重量也更輕;  2、固態機構,沒有液體物質,因此抗震性能更好,不怕摔;   3、幾乎沒有可視角度的問題,即使在很大的視角下觀看,畫面仍然不失真;   4、響應時間是LCD的千分之一,顯示運動畫面絕對不會有拖影的現象;   5、低溫特性好,在零下40度時仍能正常顯示,而LCD則無法做到;   6、制造工藝簡單,成本更低;   7、發光效率更高,能耗比LCD要低;   8、能夠在不同材質的基板上制造,可以做成能彎曲的柔軟顯示器。  二、OLED的缺點  1、壽命通常只有5000小時,要低于LCD至少1萬小時的壽命;  2、不能實現大尺寸屏幕的量產,因此目前只適用于便攜類的數碼類產品;  3、存在色彩純度不夠的問題,不容易顯示出鮮艷、濃郁的色彩。

OLED相關關鍵工藝氧化銦錫(ITO)基板前處理 (1)ITO表面平整度 ITO目前已廣泛應用在商業化的顯示器面板制造,其具有高透射率、低電阻率及高功函數等優點。一般而言,利用射頻濺鍍法(RF sputtering)所制造的ITO,易受工藝控制因素不良而導致表面不平整,進而產生表面的尖端物質或突起物。另外高溫鍛燒及再結晶的過程亦會產生表面約10 ~ 30nm的突起層。這些不平整層的細粒之間所形成的路徑會提供空穴直接射向陰極的機會,而這些錯綜復雜的路徑會使漏電流增加。一般有三個方法可以解決這表面層的影響︰一是增加空穴注入層及空穴傳輸層的厚度以降低漏電流,此方法多用於PLED及空穴層較厚的OLED(~200nm)。二是將ITO玻璃再處理,使表面光滑。三是使用其他鍍膜方法使表面平整度更好(如圖三所示)。

[圖三:ITO表面之原子力顯微鏡照片]

(2) ITO功函數的增加 當空穴由ITO注入HIL時,過大的位能差會產生蕭基能障,使得空穴不易注入,因此如何降低ITO / HIL介面的位能差則成為ITO前處理的重點。一般我們使用O2-Plasma方式增加ITO中氧原子的飽和度,以達到增加功函數之目的。ITO經O2-Plasma處理後功函數可由原先之4.8eV提升至5.2eV,與HIL的功函數已非常接近。

加入輔助電極 由於OLED為電流驅動元件,當外部線路過長或過細時,於外部電路將會造成嚴重之電壓梯度(voltage drop),使真正落於OLED元件之電壓下降,導致面板發光強度減少。由於ITO電阻過大(10 ohm / square),易造成不必要之外部功率消耗,增加一輔助電極以降低電壓梯度成了增加發光效率、減少驅動電壓的快捷方式。鉻(Cr:Chromium)金屬是最常被用作輔助電極的材料,它具有對環境因數穩定性佳及對蝕刻液有較大的選擇性等優點。然而它的電阻值在膜層為100nm時為2 ohm / square,在某些應用時仍屬過大,因此在相同厚度時擁有較低電阻值的鋁(Al:Aluminum)金屬(0.2 ohm / square)則成為輔助電極另一較佳選擇。但是,鋁金屬的高活性也使其有信賴性方面之問題;因此,多疊層之輔助金屬則被提出,如:Cr / Al / Cr或Mo / Al / Mo,然而此類工藝增加復雜度及成本,故輔助電極材料的選擇成為OLED工藝中的重點之一。

陰極工藝 在高解析的OLED面板中,將細微的陰極與陰極之間隔離,一般所用的方法為蘑菇構型法(Mushroom structure approach),此工藝類似印刷技術的負光阻顯影技術。在負光阻顯影過程中,許多工藝上的變異因數會影響陰極的品質及良率。例如,體電阻、介電常數、高解析度、高Tg、低臨界維度(CD)的損失以及與ITO或其他有機層適當的黏著介面等。

封裝 (1)吸水材料 一般OLED的生命周期易受周圍水氣與氧氣所影響而降低。水氣來源主要分為兩種:一是經由外在環境滲透進入元件內,另一種是在OLED工藝中被每一層物質所吸收的水氣。為了減少水氣進入元件或排除由工藝中所吸附的水氣,一般最常使用的物質為吸水材(Desiccant)。Desiccant可以利用化學吸附或物理吸附的方式捕捉自由移動的水分子,以達到去除元件內水氣的目的。 (2)工藝及設備開發 封裝工藝之流程如圖四所示,為了將Desiccant置於蓋板及順利將蓋板與基板黏合,需在真空環境或將腔體充入不活潑氣體下進行,例如氮氣。值得注意的是,如何讓蓋板與基板這兩部分工藝銜接更有效率、減少封裝工藝成本以及減少封裝時間以達最佳量產速率,已儼然成為封裝工藝及設備技術發展的3大主要目標。

關鍵詞: oled OLED

最近更新

關于本站 管理團隊 版權申明 網站地圖 聯系合作 招聘信息

Copyright © 2005-2018 創投網 - m.zhigu.net.cn All rights reserved
聯系我們:33 92 950@qq.com
豫ICP備2020035879號-12

 

91视频三级 | 国产一精品一av一免费 | 国产av无码专区亚洲av男同 | 真人做爰试看120秒 国产成人精品久久亚洲高清不卡 | 人妻少妇久久中文字幕一区二区 | 亚洲日韩av无码中文字幕美国 | 久久99国产精品久久 | 欧美老熟妇xb水多毛多 | 国产精品99久久精品 | 69视频免费观看l | 性无码一区二区三区在线观看 | 亚洲另类自拍丝袜第五页 | 国产色诱视频在线观看 | 韩国美女一区二区 | 99ri在线精品视频 | 伊人狠狠色丁香婷婷综合 | 特黄做受又硬又粗又大视频小说 | 亚洲人成无码网站 | 草草视频在线观看 | 欧美激情精品久久久久久 | 成人无码www免费视频 | 99久久精品无码一区二区毛片 | 久久久1024手机基地你懂地 | 手机看片久久国产免费 | 亚洲一久久久久久久久 | 午夜dj在线观看免费视频 | 国产男小鲜肉同志免费 | 成人免费毛片一区二区三区 | 日本免费a级毛一片 | 人人妻人人澡人人爽欧美精品 | 成人女人a毛片在线看 | 国产成人高清视频 | 800玖玖爱在线观看香蕉 | 男女啪啪高清无遮挡免费 | 91福利视频合集 | 日韩欧美aⅴ综合网站发布 久久久久久自慰出白浆 | 国产精品久久久久久久久久久不卡 | 亚洲国产成人精品无码一区二区 | 国产乱人视频免费播放 | 无码人妻精品一区二区三区9厂 | 色偷偷人人澡人人爽人人模 |