小明永久免费大陆在线观看-小明永久免费视频-小明永久视频免费播放-小嫩妇好紧好爽再快视频-小嫩嫩12欧美-小日本xxx

首頁 生活 > 正文

二階等差數列

在數學中,二階平均數指的是一個數列的每相鄰兩項的平均數后再取平均數的數值。二階等差數列則指的是每相鄰兩項的差相同的數列。本文將探秘二階平均數和二階等差數列的公差之間的關系。

什么是二階等差數列?

二階等差數列是數列的每相鄰兩項的差相同的一個數列。即,假設有一個數列 $a_1, a_2, a_3, ..., a_n$,其任意相鄰兩項之差為 $d_1, d_2, d_3, ..., d_{n-1}$,如果 $d_1, d_2, d_3, ..., d_{n-1}$ 也形成了一個等差數列,則原數列為二階等差數列。

舉例來說,數列 $1,4,7,10,13$ 就是一個二階等差數列,其差數列為 $3,3,3,3$。


(相關資料圖)

二階平均數的計算方式是什么?

二階平均數的計算方式是:一個數列的每相鄰兩項的平均數后再取平均數的數值。

換句話說,如果有一個數列 $a_1, a_2, a_3, ..., a_n$,則其二階平均數為:

$$frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_{i+2}}{2}$$

二階平均數與二階等差數列的公差之間的關系是什么?

對于一個二階等差數列 $a_1, a_2, a_3, ..., a_n$,其二階平均數為:

$$frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_{i+2}}{2}$$

將 $a_{i+2}=a_i+2d$ 代入式子中得:

$$frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_i+2d}{2}=frac{1}{n-2}sum_{i=1}^{n-2}left(a_i+dright)$$

由于該數列為二階等差數列,所以相鄰兩項的差為常數 $d$,且數列中一共有 $n-1$ 個差數,于是:

$$frac{1}{n-2}sum_{i=1}^{n-2}left(a_i+dright)=frac{1}{n-2}left(sum_{i=1}^{n}a_i+(n-2)dright)$$

注意到等差數列的求和公式 $S_n=frac{n}{2}(a_1+a_n)$,于是:

$$frac{1}{n-2}left(sum_{i=1}^{n}a_i+(n-2)dright)=frac{a_1+a_n}{2}$$

即,對于一個二階等差數列,其二階平均數為其首項和末項的平均數。

怎樣通過二階平均數求二階等差數列的公差?

已知二階等差數列的首項和二階平均數,就可以求出其公差。

由上一問可知,二階等差數列的二階平均數等于其首項和末項的平均數,即:

$$frac{a_1+a_n}{2}=A_2$$

而二階平均數 $A_2$ 又等于相鄰兩項之和的平均數的平均數:

$$A_2=frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_{i+2}}{2}$$

將 $a_{i+2}=a_i+2d$ 代入式子中得:

$$A_2=frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_i+2d}{2}=frac{1}{n-2}sum_{i=1}^{n-2}left(a_i+dright)$$

移項得到:

$$frac{n-2}{n}cdot A_2=frac{a_1+a_{n-1}}{2}+d$$

因為 $a_{n-1}=a_1+(n-2)d$,所以:

$$frac{n-2}{n}cdot A_2=frac{a_1+a_1+(n-2)d}{2}+d$$

化簡得:

$$d=frac{2n}{n-2}(A_2-a_1)$$

二階等差數列的性質有哪些?

二階等差數列具有以下性質:

1.二階等差數列的首項、末項和二階平均數的平均值相等。

2.一正一負、兩個相鄰的差數之和為0。

3.一個數列是二階等差數列的充分必要條件是該數列的前三項構成等比數列。

4.一個數列是二階等差數列的充分必要條件是該數列的相鄰三項之比相等。

二階等差數列與算數平均數的關系是什么?

一個數列的算數平均數是其所有項之和除以項數。

對于一個二階等差數列 $a_1, a_2, a_3, ..., a_n$,其算數平均數為:

$$frac{a_1+a_2+a_3+...+a_n}{n}$$

由于該數列為二階等差數列,所以相鄰三項之比相等,設其為 $k$,則:

$$frac{a_2}{a_1}=k, frac{a_3}{a_2}=k, ..., frac{a_n}{a_{n-1}}=k$$

注意到 $a_2=kcdot a_1, a_3=k^2cdot a_1, ..., a_n=k^{n-2}cdot a_1$,于是:

$$frac{a_1+a_2+a_3+...+a_n}{n}=frac{a_1(k^{n-2}+k^{n-3}+...+k+1)}{n}=frac{a_1(k^{n-1}-1)}{(n-1)(k-1)}$$

將 $k$ 代入得:

$$frac{a_1+a_2+a_3+...+a_n}{n}=frac{a_1(a_{n-1}+a_1)}{2(a_1+(n-2)d)}=frac{a_1+a_n}{2}$$

即,對于一個二階等差數列,其算數平均數等于其首項和末項的平均數,與二階平均數的結論相同。

二階等差數列有什么應用?

二階等差數列可以用于描述一些變化規律,例如:

1.在等差數列的基礎上,若差數列也構成了一個等差數列,則該數列為二階等差數列。例如,若初始速度為 $u$,加速度為 $a$,則速度在 $t$ 時刻的值即為二階等差數列 $u, u+at, u+2at, ...$。

2.在統計學中,二階等差數列被用于描述時間序列數據的趨勢部分。

總之,二階平均數與二階等差數列的公差之間存在簡單的關系,這種關系可以用于求解問題。二階等差數列具有一些特殊的性質,在數學和應用領域都有應用。

關鍵詞:

最近更新

關于本站 管理團隊 版權申明 網站地圖 聯系合作 招聘信息

Copyright © 2005-2023 創投網 - m.zhigu.net.cn All rights reserved
聯系我們:39 60 29 14 2@qq.com
皖ICP備2022009963號-3

欧美mv日韩mv国产网站 | 国内精品一级毛片免费看 | 99久久婷婷国产综合精品电影 | 97香蕉碰碰人妻国产欧美 | 卡通动漫亚洲综合 | 国产熟妇搡bbbb搡bbbb搡 | 日韩av无码一区二区三区 | 18禁无遮挡羞羞污污污污网站 | 欧美黑人粗暴多交高潮水最多 | 男女车车的车车网站w98免费 | 色狠狠色狠狠综合天天 | 88国产精品视频一区二区三区 | 成人国产精品久久久免费 | 一本加勒比hezyo无码人妻 | 亚洲av乱码一区二区三区 | 国产av旡码专区亚洲av苍井空 | 国产成人a∨激情视频厨房 丰满大爆乳波霸奶 | 欧美老熟妇乱大交xxxxx | 乱人伦人妻中文字幕无码 | 国产精品免费一区二区三区四区 | 蜜臀久久99精品久久久久久 | 国产亚洲精品hd网站 | 亚洲色欲久久久久综合网 | 亚洲欧洲中文日韩久久av乱码 | 亚洲香蕉成人av网站在线观看 | 深夜放纵内射少妇 | 又爽又高潮的bb视频免费看 | 亚洲国产成人精品无码区在线观看 | 长腿校花无力呻吟娇喘的视频 | 18禁超污无遮挡无码免费游戏 | 国产内射爽爽大片视频社区在线 | 欧日韩无套内射变态 | 中文字幕一区二区人妻 | 国产精品久久久久久av福利 | 纯爱无遮挡h肉动漫在线播放 | 麻豆主播精品视频在线观看 | 久久www免费人成人片 | 久久精品中文无码资源站 | 99香蕉国产精品偷在线观看 | 国产亚洲情侣一区二区无 | 欧美精品18videosex性欧美 |